doi https://doi.org/10.58460/ajmbs.v2i01.177

RESEARCH ARTICLE

Assessing Cardiovascular Risk Using the Framingham Risk Score Among People Living with HIV on HAART at Machakos County Referral Hospital, Kenya

Sarah MALINDA SYENGO o Scholastica GATWIRI MATHENGE Nelson CHENGO MENZA fo

- 1 Medical Laboratory Department, Coptic Hospital, Nairobi, Kenya.
- 2 Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya.

*Corresponding Author: sarahsyengo2@gmail.com

Submitted: 25th September 2025 | Accepted: 12th October 2025 | Published Online: 29th October 2025

ABSTRACT

The widespread availability of HAART has significantly extended the survival of people living with HIV. With this increased life expectancy, NCDs such as cardiovascular disease have emerged as major health concerns. Both HIV infection and long-term exposure to antiretroviral therapy contribute to metabolic changes and early vascular aging. This study assessed cardiovascular risk using the Framingham Risk Score (FRS) among people living with HIV (PLHIV) receiving HAART at Machakos County Referral Hospital, Kenya, and examined demographic and clinical factors associated with elevated risk. A cross-sectional study was conducted among 406 adult PLHIV who had been on HAART ≤ 3 months. Data was collected through structured questionnaires, interviews, health records review and laboratory analyses. The 10-year CVD risk was estimated using the Adult Treatment Panel III (ATP III) Framingham algorithm, categorizing patients as low, moderate, moderately high, or high risk. Most participants (71.2%) were classified as low cardiovascular risk; 18.5% as moderate risk, 9.8% as moderately high cardiovascular risk and 0.5% as high cardiovascular risk individuals. Older age $\{25-40 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ CI: } 10.12-140.16, p < 0.001), 41-59 \text{ years (AOR} = 37.11, 95\% \text{ years (AOR} = 37.11, 95\%$ 31.01, 95% CI: 9.04–140.16, p < 0.001), and ≥60 years (AOR = 9.75, 95% CI: 7.14–31.74, p < 0.001)}, male gender (AOR = 3.44, 95% CI: 1.67–8.09, p = 0.001), elevated HDL (AOR = 8.23, 95% CI: 3.92–17.26, p < 0.001), smoking (AOR = 6.80, 95% CI: 1.53-31.25, p < 0.001), shorter duration on antiretrovirals (<5 years) (AOR = 5.17, 95% CI: 1.94–13.79, p = 0.001), and systolic BP ≥140 mmHg (AOR = 30.16, 95% CI: 12.43– 73.18, p < 0.001) were significantly associated with higher CVD risk. Thus, although most PLHIV on HAART at Machakos County Referral Hospital had low cardiovascular risk, older age, male gender, hypertension, smoking, short duration on antiretrovirals, and dyslipidemia were found to be key contributors to elevated FRS. These findings underscore the need to integrate routine cardiovascular risk screening and lifestyle modification interventions into HIV care programs in Kenya.

Keywords: HIV, HAART, Framingham Risk Score, cardiovascular risk, Kenya, non-communicable diseases

How to Cite this Paper: SYENGO, S. M., MATHENGE, S. G., & MENZA, N. C. (2025). Framingham Risk Score among HIV-Positive Patients on HAART at Machakos Level V Hospital, Kenya. African Journal of Medical Biosciences, 2(01). https://doi.org/10.58460/ajmbs.v2i01.177

INTRODUCTION

The introduction of highly active antiretroviral therapy (HAART) in the mid-1990s transformed HIV infection from a fatal disease into manageable chronic condition. Since the rollout of HAART, AIDS-related mortality has declined by nearly 68% globally between 2004 and 2023 (UNAIDS, 2023). In sub-Saharan Africa, where more than two-thirds of the world's people living with HIV (PLHIV) reside, the availability of HAART has significantly improved survival and life expectancy. In Kenya, national HIV estimates indicate that the number of PLHIV currently on treatment exceeds 1.4 million, representing more than 85% treatment coverage, and AIDS-related deaths have reduced by over 70% since 2010 (Kenya Ministry of Health, 2022). As a result, PLHIV are now living longer, but with increasing exposure to non-communicable diseases (NCDs), particularly cardiovascular diseases (CVDs).

Globally, CVD accounts for 32% of all deaths, with over three-quarters occurring in low- and middle-income countries (LMICs) (World Health Organization [WHO], 2022). The African region has experienced a 52% rise in ischemic heart disease and a 42% rise in stroke-related deaths between 2000 and 2019 (WHO, 2022). In Kenya, national health data estimate that CVDs contribute to 13–15% of total mortality, and the prevalence is projected to rise as more PLHIV reach middle and older ages (Kenya Ministry of Health, 2022). Emerging evidence from Kenyan HIV cohorts shows a growing trend in dyslipidemia and hypertension among long-term HAART users (Osoti et al., 2018; Masyuko et al., 2023).

Several algorithms exist to predict cardiovascular risk, including the Systematic Coronary Risk Evaluation (SCORE), the D:A:D risk score, and the Framingham Risk Score (FRS). Among these, the FRS remains one of the most widely used and validated tools for estimating 10-year risk of coronary heart disease (Wilson et al., 1998). It uses easily obtainable clinical and biochemical data, making it more feasible and cost-effective in such contexts. The FRS estimates a 10-year risk for coronary heart disease based on parameters such as age, sex, total cholesterol, high-density lipoprotein (HDL) cholesterol, systolic blood pressure, smoking status, and antihypertensive use. Based on the score, individuals are categorized into low (<10%), intermediate (10-20%), and high (>20%) 10-year risk categories (NCEP, 2002). Existing literature from high-income settings demonstrates that PLHIV have a 1.5-2-fold higher

risk of myocardial infarction compared to HIV-

negative individuals, even after controlling for

traditional risk factors Freiberg et al. (2013). In

sub-Saharan Africa, emerging evidence points to a growing CVD risk burden among PLHIV. In Cameroon, Pefura-one et al. (2019) reported that 13% of People living with HIV (PLWH) adults on ART were classified as moderate-to-high risk by FRS, with higher rates observed in males and older patients. In Uganda, Achila et al. (2022) found that longer ART duration was associated with increased risk scores, reflecting cumulative exposure to metabolic effects of therapy.

Kenyan studies remain relatively sparse. Osoti et al. (2018) assessed People living with HIV (PLWH) adults in Nairobi and reported that up to 12% were in intermediate-to-high FRS categories. Masyuko et al. (2023) recently documented rising cardiometabolic complications in Kenyan cohorts, emphasizing the need for systematic screening. However, these studies have been largely urban-focused, with little data from semi-urban and rural regions such as Machakos County where healthcare resources may be more limited. While Kenya has made significant progress in scaling up HIV care, the integration of cardiovascular disease screening into management remains limited. Current treatment guidelines focus mainly on viral suppression and opportunistic infection control, with minimal emphasis on metabolic or vascular health. As the population of aging PLHIV continues to grow, there is an urgent need to assess their long-term cardiovascular risk and identify modifiable predictors. This study therefore sought to determine the Framingham Risk Score among PLHIV on HAART at Machakos County Referral Hospital and to identify associated demographic and clinical predictors.

METHODS

Study Design

This was a cross-sectional study conducted between April 2022 to June 2022. Data were collected at a single point in time using structured questionnaires and clinical records. Information was obtained on demographic characteristics (age, sex, marital status, level of education, occupation) and clinical parameters (blood pressure, body mass index, lipid profile, and duration on HAART). The FRS was analysed for each participant to estimate their 10-year cardiovascular risk.

Study Location

This was a cross-sectional study conducted between April 2022 to June 2022. Data were collected at a single point in time using structured questionnaires and clinical records. Information was obtained on demographic characteristics (age, sex. marital status, level of education, occupation) Research Tools and clinical parameters (blood pressure, body mass index, lipid profile, and duration on HAART). The FRS was analysed for each participant to estimate their 10-year cardiovascular risk.

Study Population

The study included 406 People living with HIV patients receiving care at Machakos County Referral Hospital's Comprehensive Care Centre, one of the key referral centers in Eastern Kenya. Participants were recruited from the hospital's Comprehensive Care Centre (CCC), which serves both rural and semi-urban populations. The selected sample size met the required threshold based on statistical calculation and the feasibility of patient recruitment within the study duration. Participants were selected according to inclusion and exclusion criteria outlined below.

Inclusion Criteria

Study participants were eligible for inclusion if

- Were adults PLWHIV aged 20 years or older,
- Had been on HAART for at least three months.
- Provided written informed consent.

Exclusion Criteria

Exclusion criteria comprised:

- Pregnant women due to physiological lipid and metabolic variations.
- Severely ill patients or those requiring emergency care.
- Individuals with incomplete clinical biochemical records, such as missing lipid or blood pressure data.
- Patients who declined to participate.

Sample Size Determination

The study's sample size was based on Fisher's et al. (2002), formula, using a prevalence rate of 59.9% for dyslipidemia (Temesgen et al., 2021).

$$N = \underline{Z_2pq}$$

 δ_2

Where;

N = Minimum Sample size

Z = 1.96; standard normal deviation at 95% confidence level.

P = predictable prevalence of dyslipidemia according to literature

Q = share of target population without dyslipidemia (1 - p)

 δ = degree of accuracy set at 0.05

$$= \underbrace{(1.96^2 \times 0.599 \times 0.401) = 369}_{0.05^2}$$

N = 406 (369 + 10% of actual sample size) to account for non-responsive rate.

A structured data collection form, complemented by laboratory test results, was used to obtain comprehensive and reliable information from study participants. The tool captured demographic variables (age, gender, marital status, and duration on HAART), clinical details (antiretroviral regimen and comorbidities), and biochemical parameters (total cholesterol, triglycerides, HDL-C, and LDL-C). Laboratory data sheets were utilized to record lipid profile results. The questionnaire and laboratory forms were developed based on an extensive literature review, standardized data collection tools from previous studies, and expert consultation with clinicians and laboratory personnel to ensure clarity and relevance. To enhance validity and reliability, the instruments underwent pilot testing among 60 participants, allowing for identification and correction of ambiguities. Content and face validity were established through review by supervisors, a psychometrician, and clinical officers at the Comprehensive Care Clinic. Clear instructions were incorporated to promote consistency during data collection, and all data were entered into a spreadsheet by the principal investigator under supervision to ensure data accuracy and integrity.

Data Collection Procedures

Data was collected between April and June 2022 by the clinicians following a structured and logical process to ensure consistency and data quality. Eligible participants attending routine clinic visits at the Comprehensive Care Centre were first approached, briefed on the study objectives, and invited to participate. Written informed consent was obtained prior to enrollment. Thereafter, participant completed interviewer-administered questionnaire captured sociodemographic information (age, sex, marital status, education level, occupation), clinical history (duration on HAART, smoking, hypertension status), and lifestyle behaviors. Anthropometric and clinical measurements were then taken, including weight, height, and waist circumference, using calibrated equipment, and body mass index (BMI) was subsequently calculated. Blood pressure was measured in a sitting position using sphygmomanometer after at least five minutes of rest. Finally, venous blood samples were collected after an overnight fast for lipid profile analysis, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) using an automated analyzer (Humastar 600). The Friedewald formula measured LDL-C levels (Tremblay et al., 2004). Internal quality control procedures were conducted daily to ensure the accuracy and reliability of laboratory results.

Data Analysis

Data were entered and cleaned in Microsoft Excel Sociodemographic Characteristics and analyzed using SPSS version 25. Descriptive statistics (means, standard deviations, frequencies, and percentages) summarized demographic and clinical characteristics. The prevalence of low, moderate, moderately high and high FRS categories was computed. Associations between demographic/clinical variables and FRS categories which were then categorized to low and high were assessed using chi-square tests for categorical variables and logistic regression for multivariable analysis. A p-value <0.05 was considered statistically significant.

Ethical Considerations

Ethical approval was obtained from Kenyatta University Ethical Review Committee (KU-ERC) (Ref: PKU/2402/11536). A research permit from of marital status, 53.4% (n = 217) were single, National Commission for Science, Technology, (NACOSTI) and Innovation (License No: NACOSTI/P/22/15859) was obtained. Permission kg/m² (IQR: 21.2–28.3). Nearly half of the to carry out this study and any other information respondents (48.5%, n = 197) had a normal BMI, participants were obtained from from the Machakos County Referral Hospital. All participants were only admitted to the study after offering informed consent. No medical services were denied from participants who do not consent to the study. All study participants received their results during subsequent CCC visits.

Table 1: Demographic Characteristics of Study Participants

Demographic factors Frequency (n) Percent Gender Male 28.6 116 290 Female 71.4 Age (years) Median age (IQR) 46(38 - 55)<=24 years 23 5.7 25 - 40 years 100 24.6 41 - 59 years 224 55.2 >=60 years 59 14.5 Marital status 53.4 Single 217 189 46.6 Married **Education level** Primary or lower level 180 44.3 41.1 Secondary 167 14.5 59 Tertiary

RESULTS

A total of 406 PLWHIV receiving HAART were enrolled in the study. The demographic variables assessed included age, gender, level of education, marital status, and BMI. The majority of participants were female (71.4%, n = 290), while males accounted for 28.6% (n = 116) of the study population. The median age of respondents was 46 years (interquartile range [IQR]: 38–55 years). More than half of the participants (55.2%, n =224) were aged between 41 and 59 years, followed by 24.6% (n = 100) aged 25–40 years, 14.5% (n = 59) aged ≥60 years, and 5.7% (n = 23) aged ≤24 years. Further, 44.3% (n = 180) of the participants had attained primary education or below, 41.1% (n = 167) had secondary education, while 14.5% (n = 59) had completed tertiary education. In terms whereas 46.6% (n = 189) were married. The median BMI of the study participants was 24.4 while 6.7% (n = 27) were underweight, 28.1% (n = 114) were overweight, and 16.7% (n = 68) were obese (Table 1).

Occupation				
Unemployed	76	18.7		
Employed	68	16.7		
Self employed	262	64.5		
BMI				
Median (IQR)	24.4(21.2 - 28.3)			
Normal	197	48.5		
Underweight	27	6.7		
Overweight	114	28.1		
Obese	68	16.7		
Cigarette smoking				
Yes	22	5.4		
No	384	94.6		

IQR: Interquartile range

Medical History and Clinical Characteristics of Study Participants

The clinical characteristics of the study participants are summarized in Table 2. Variables assessed included history of hypertension, history of CVD, blood pressure status, history of cigarette smoking, duration on HAART, and treatment regimen. A total of 15.3% (n = 62) of respondents reported a history of hypertension, while 84.7% (n = 344) had no prior diagnosis. Only 6.9% (n = 28) of participants reported a history of cardiovascular disease, whereas 93.1% (n = 378) did not. Regarding smoking status, 5.4% (n = 22) of the participants were current or former smokers, and 94.6% (n = 384) had no history of cigarette smoking. Based on blood pressure measurements, 17.0% (n = 69) of participants were hypertensive, while the majority (83.0%, n = 337) had normal

blood pressure at the time of assessment. The duration on HAART ranged from six months to 20 years, with a median of 9 years (IQR: 5–13 years). Most participants (73.6%, n = 299) had been on HAART for more than five years. When categorized by treatment duration, 22.2% (n = 90) had used HAART for less than five years, 36.7% (n = 149) for 5–10 years, and 41.1% (n = 167) for more than 10 years. Further, majority of respondents (93.1%, n = 378) were on first-line HAART regimens, while 6.9% (n = 28) were on second-line regimens. The most frequently prescribed regimen was TDF/3TC/DTG (89.7%, n = 364), followed by AZT/3TC/ATV/r (3.2%, n = 13), TDF/3TC/EFV (1.5%,n 6), ABC/3TC/DTG (0.7%,3), and ABC/3TC/ATV/r (0.5%, n = 2).

Table 2: Medical History and Clinical Characteristics of Study Participants

Medical history and clinical factors	Frequency (n)	Percent (%)		
History of hypertension				
Yes	62	15.3		
No	344	84.7		
History of cardiovascular				
Yes	28	6.9		
No	378	93.1		
Systolic Blood Pressure				
≥140 mmHg	69	17.0		
<140 mmHg	337	83.0		

Diastolic Blood Pressure				
≥90 mmHg	69	17.0		
<90 mmHg	337	83.0		
Duration of ARV	drug use (years)			
Median (IQR)	9	(5 -13)		
< 5 years	90	22.2		
5 – 10 years	149	36.7		
> 10 years	167	41.1		
HAART Tre	eatment line			
First line	377	92.9		
Second line	29	7.1		
HAART Re	gimen type			
ABC/3TC/ATV/r	2	0.5		
ABC/3TC/DTG	3	0.7		
AZT/3TC/ATV/r	13	3.2		
AZT/3TC/DTG	1	0.2		
AZT/3TC/LPV/r	1	0.2		
AZT/3TC/NVP	1	0.2		
AZT3TC/LPV/r	1	0.2		
D4T/3TC/NVP	1	0.2		
TDF/3TC/ATV/r	12	3.0		

Values are expressed as mean \pm standard deviation or frequency (%). Abbreviations: ARV: Antiretroviral, IQR: Interquartile range, HAART: Highly active antiretroviral therapy, ABC: Abacavir, 3TC: Lamivudine, ATV/r: Atazanavir/ritonavir, DTG: Dolutegavir, AZT: Azidothymidine, LPV/r: Lopinavir/ritonavir, D4T: Stavudine, NVP: Nevirapine, TDF: Tenofovir disoproxil fumarate, EFV: Efavirenz

Distribution of Framingham Risk Scores

Based on the FRS assessment, the majority of participants (71.2%, n = 289) were categorized as having low cardiovascular risk. In comparison, 18.5% (n = 75) had moderate risk, 9.8% (n = 40) exhibited moderately high risk, and 0.5% (n = 2) were classified as having high cardiovascular risk (Table 3).

Table 3:

The Framingham Risk Score Among HIV-Positive Patients on HAART at MCRH

Framingham risk score	Frequency	Percent
Low	289	71.2
Moderate	75	18.5
Moderately high	40	9.8
High	2	0.5

DISCUSSION

This study evaluated the 10-year CVD risk among PLWHIV patients on HAART at Machakos County Referral Hospital using the FRS. Majority of participants (71.2%) were classified as low risk, while 18.5% had moderate risk, 9.8% had moderately high risk, and 0.5% were at high risk. The predominance of low FRS may be attributed to the fact that most participants were non-smokers and normotensive. Smoking and elevated systolic pressure were among the factors significantly associated with increased cardiovascular risk in this study. These findings align with global and regional evidence showing that PLHIV are experiencing a dual burden of infectious and NCDs, emphasizing the importance of integrating CVD risk screening into HIV care.

Table 4: Association Between Patient Characteristics and Risk of Cardiovascular Disease

			s ana Risk of Carai			ъ	
FRS 1	isk	OR (95%CI)	P- value	AOR (95%CI)	P- value		
	High risk	Low risk					
	n(%)	n(%)					
	Age						
≤4 years	1(0.9)	22(7.6)	Ref		Ref		
25 - 40 years	8(6.8)	92(31.8)	3.62(1.99 - 6.59)	< 0.001	37.11(10.12 - 140.16)	< 0.001	
41 - 59 years	71(60.7)	153(52.9)	19.34(7.91 - 47.32)	< 0.001	31.01(9.04 - 106.34)	< 0.001	
≥60 years	37(31.6)	22(7.6)	37.0(4.66 - 293.90)	0.001	9.75(4.08 – 23.30)	< 0.001	
			Gender				
Male	57(48.7)	59(20.4)	3.70(2.33 - 5.88)	< 0.001	3.44(1.67 - 7.09)	0.001	
Female	60(51.3)	230(79.6)	Ref		Ref		
		Te	otal Cholesterol (TC)				
Yes	41(35.0)	77(26.6)	1.49(0.94 - 2.35)	0.093	1.43(0.72 - 2.85)	0.313	
No	76(65.0)	212(73.4)	Ref		Ref		
			HDL				
High	75(64.1)	109(37.7)	2.95(1.89 - 4.61)	< 0.001	8.23(3.92 - 17.26)	< 0.001	
Low	42(35.9)	180(62.3)	Ref		Ref		
			Cigarette smoking				
Yes	19(16.2)	3(1.0)	18.48(5.35 - 63.81)	< 0.001	6.80(1.53 - 31.25)	< 0.001	
No	98(83.8)	286(99.0)	Ref		Ref		
		I	Ouration on HAART				
Less than 5 years	19(16.2)	71(24.6)	2.15(1.19 - 3.90)	0.012	5.17(1.94 - 13.79)	0.001	
5 - 10 years	37(31.6)	112(38.8)	1.74(1.07 - 2.84)	0.026	1.78(0.87 - 3.64)	0.113	
>10 years	61(52.1)	106(36.7)	Ref		Ref		
Systolic pressure							
≤140 mmHg	51(43.6)	19(6.6)	10.98(6.08 - 19.84)	< 0.001	30.16(12.43 - 73.18)	< 0.001	
<140 mmHg	66(56.4)	270(93.4)	Ref		Ref		

Reference category (Ref) = category of the independent variable which each other category is compared. Low risk = participants having low risk of CVD according to FRS analysis. High risk = participants having moderate, moderately high and high risk of CVD according to FRS FRS: Framingham risk score, OR: Odds ratio, AOR: Adjusted odds ratio, TC: Total cholesterol, HDL: High density lipoprotein cholesterol, HAART: Highly active antiretroviral therapy. CI = Confidence Interval; p < 0.05 considered statistically significant.

Comparable results have been reported in other Participants with systolic blood pressure ≥140 African countries. In Cameroon, Pefura-one et al. mmHg were 25.9 times more likely to have high (2019) found that 87% of PLHIV had low FRS, CVD risk than those with lower pressures. while Achila et al. (2022) in Uganda reported that Hypertension is a well-recognized modifiable 82% were in the low-risk category. In Indonesia, CVD risk factor, and similar associations have Lindavani predominance of low-to-moderate risk (68.0%), (Masyuko et al., 2023; Wu et al., 2019). The similar to our findings. The younger age structure association of the current study population may partly explain predominance of integrase strand transfer these results, as CVD risk factors tend to inhibitor (INSTI)-based regimens in this cohort, accumulate with age. In contrast, studies from which have been linked to weight gain and Ghana reported higher CVD risk distributions, with 41.5%, 28.1%, and 30.4% of participants in NNRTI-based regimens (Byonanebye et al., low, medium, and high FRS categories respectively 2022; Eckard & McComsey, 2020). (Nyiambam et al., 2020). The higher risk observed in the Ghanaian cohort could be due to the older Smoking was another strong predictor, with age of participants (mean 54 years) and the use of smokers being 15 times more likely to have hospital record-based data, which likely included elevated FRS than non-smokers. This finding patients with pre-existing metabolic conditions, corresponds with reports from Grand et al. These differences underscore the need for context- (2019) and Wu et al. (2019), where smoking, high specific validation of CVD risk algorithms in HIV blood pressure, and dyslipidemia were leading populations.

The present study identified age, gender, HDL atherogenesis (Messner & Bernhard, 2014). levels, cigarette smoking, systolic blood pressure, and duration on HAART as key predictors of high FRS. Age was the most prominent determinant: participants aged 25–40, 41–59, and ≥60 years were importance of integrating cessation programs significantly more likely to have higher FRS into HIV care. compared to those ≤24 years. This finding aligns with studies from Cameroon (Pambou et al., 2022), Ethiopia (Woldeyes et al., 2022), and Nigeria for less than five years were more likely to have (Ekun et al., 2021), which consistently show that cardiovascular risk escalates with age due to vascular stiffening, endothelial dysfunction, and longer ART duration to higher metabolic risk accumulation of metabolic abnormalities. In (Agu et al., 2019; Gupta et al., 2020). The addition, older PLHIV often have longer ART exposure, compounding their risk cumulative drug-induced metabolic effects.

Gender differences were also evident, with male participants being 3.4 times more likely to have findings, Grand et al. (2020) reported that high FRS compared to females. Our results agree with findings from Ethiopia, where male gender associated with increased CVD risk. However, was a strong predictor of elevated FRS (Woldu et Juma et al. (2019) demonstrated that NRTIal., 2021), and with Woldeyes et al. (2022), who found that older age and longer HAART duration cholesterol, among males accounted for their higher risk. composition plays a crucial role in metabolic Conversely, Lindayani et al. (2021) reported higher outcomes. CVD risk among women, possibly due to higher rates of obesity and family history of CVD in Contrary to expectations, total cholesterol levels female participants. Similarly, Vigny et al. (2020) found that metabolic syndrome a major CVD determinant was more prevalent among women, likely due to hormonal and anthropometric factors. These discrepancies may arise from differences in sample sizes, ART regimens, and population exhibit lower CVD toxicity than PI- and structure across studies.

Hypertension emerged as one of the strongest (2019), where TC was not predictive of peripheral independent predictors of elevated FRS.

et al. (2021) also reported a been reported in other African HIV cohorts may be influenced increased risk of hypertension compared to

> CVD risk factors. Smoking promotes endothelial dysfunction, vascular inflammation, Evidence indicates that smoking cessation interventions can reduce 10-year CVD risk by 20-35% (Wu et al., 2019), highlighting the

Interestingly, patients who had been on HAART high FRS compared with those treated for over 10 years. This contrasts with some studies linking difference may stem from the widespread use of through newer INSTI-based regimens (TDF/3TC/DTG) in this population, which have lower dyslipidemic potential compared to older protease inhibitor (PI) or NRTI-based regimens. Similar to our duration HAART was not significantly based regimens were linked to elevated total emphasizing that regimen

> were not significantly associated with FRS in this study. Most participants had normal TC levels, possibly due to the metabolic safety of INSTIbased regimens. Prior studies suggest that integrase inhibitors and CCR5 antagonists NNRTI-based therapies (Vos & Venter, 2021). Similar results were observed by Agu et al. arterial disease. Conversely, Hedayatnia et al.

(2020) found that elevated TC was significantly elevated CVD risk scores. These findings highlight associated with higher CVD risk, although their the emerging challenge of cardiovascular disease study involved a much larger and HIV-negative among people living with HIV in Kenya, even in cohort. These contrasting findings emphasize the semi-urban settings. As HIV care continues to need for longitudinal monitoring of lipid changes extend in PLWHIV populations on different ART complications will play an increasing role in regimens.

Overall, despite most participants being classified treatment programs is as low risk, the presence of moderate-to-high risk comprehensive and sustainable care for this subgroups warrants proactive management, population. Integrating CVD risk screening into HIV care offers a cost-effective opportunity for early prevention. Routine measurement of blood pressure, lipid profiles, and BMI, combined with smoking cessation support and lifestyle counseling, should become standard practice in HIV clinics. In addition, periodic review of ART regimens may be necessary for patients at high metabolic risk. Kenya's current HIV treatment guidelines primarily focus on viral suppression opportunistic infection control (Kenya Ministry of Health, 2022). However, as the HIV population ages, national guidelines should expand to include metabolic and cardiovascular risk management. Similar calls have been made across sub-Saharan Africa to address the emerging burden of NCDs among PLHIV. Strengthening integration between HIV and NCD services can reduce long-term morbidity and mortality, enhance quality of life, and reduce health system costs.

Strengths and limitations

This study contributes valuable data from a semiurban Kenyan population, filling an important gap in the literature. The use of standardized FRS calculations and robust data collection enhances the reliability of findings. However, certain limitations must be acknowledged. First, the crosssectional design limits causal inference; associations observed cannot establish temporal relationships. Second, the FRS was developed in a predominantly Caucasian population and may underestimate risk in African cohorts, where traditional and non-traditional risk factors may interact differently (Dimala & Blencowe, 2018). Third, dietary patterns and physical activity, important contributors to CVD risk, were not assessed. Finally, the relatively low prevalence of **Acknowledgements** smoking and alcohol use may have limited the The power to detect associations with these factors.

Conclusion(s)

Majority of participants (71.2%) were classified as low risk, while 18.5% had moderate risk, 9.8% had moderately high risk, and 0.5% were at high risk. Older age, male gender, HDL levels, cigarette smoking, systolic blood pressure, and duration on HAART were significantly associated with

life expectancy, morbidity and mortality. The integration of cardiovascular risk assessment into crucial to ensure

Recommendations

This study recommends:

- 1. Routine CVD Risk Screening: Incorporate Framingham Risk Score or similar validated tools into HIV clinics for periodic assessment of patients, especially those on long-term
- 2. Integrated HIV–NCD Care: Expand HIV guidelines in Kenya to include management of hypertension, dyslipidemia, and obesity in People living with HIV (PLWH) patients.
- 3. Lifestyle Interventions: Implement counseling on nutrition, physical activity, management, smoking cessation, and alcohol moderation as part of HIV care packages.
- 4. Pharmacological Review: Consider regimen patients adjustments for at high cardiovascular risk, avoiding ART drugs with known metabolic toxicity where feasible.
- System Strengthening: healthcare providers in CVD risk assessment and management within HIV programs.

Recommendation for Further Study

The finding that high HDL cholesterol was associated with increased cardiovascular risk among patients on HAART is unexpected and contradicts the traditional view of HDL as the 'good lipid' unlike LDL. Further studies are recommended to investigate the underlying mechanisms of this relationship, particularly the role of ART regimens and HIV infection in altering HDL function and its impact on cardiovascular risk.

author gratefully acknowledges management and staff of Machakos County Referral Hospital for their support during data collection. Sincere appreciation is extended to all participants for their involvement. Gratitude is also given to Dr. Scholastica Mathenge and Dr. Nelson Menza for their guidance throughout the study.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Sarah Malinda Syengo personally financed the Ekun, O. A., Fasela, E. O., Oladele, D. A., study and was responsible for conceptualization, study design, data collection, data analysis, interpretation of findings, and drafting of the Scholastica manuscript. Gatwiri Mathenge contributed to the design of the study and provided critical feedback on the manuscript. Nelson Chengo Menza participated in study design, supported data analysis, and assisted in manuscript revision. The collaboration of all three authors was integral to the successful completion of the study.

REFERENCES

- Achila, O. O., Ssekamatte, T., Nsubuga, F., & Wanyenze, R. K. (2022). Dyslipidemia and associated risk factors among HIV/AIDS Freiberg, M. S., Chang, C. C. H., Kuller, L. H., patients on HAART in Asmara, Eritrea. 17(7), **PLOS** ONE. e0270838. https://doi.org/10.1371/journal.pone.0270838
- Agu, C. E., Uchendu, I. K., Nsonwu, A. C., Okwuosa, C. N., & Achukwu, P. U. (2019). Prevalence and associated risk factors of peripheral artery disease in virologically HIV-infected suppressed individuals antiretroviral therapy in Kwara state, Nigeria: a cross-sectional study. BMC Public Health, 19(1). https://doi.org/10.1186/s12889-019-7496-
- Burke L. M. (2017). Practical Issues in Evidence-Based Use of Performance Supplements: Supplement Interactions, Repeated Use and Individual Responses. Sports medicine (Auckland, N.Z.), 47(Suppl 1), 79–100. https://doi.org/10.1007/s40279-017-0687-1
- Byonanebye, D. M., Polizzotto, M. N., Neesgaard, B., Sarcletti, M., Matulionyte, R., Braun, D. L., Castagna, A., De Wit, S., Wit, F., Fontas, E., Vehreschild, J. J., Vesterbacka, J., Greenberg, L., Hatleberg, C., Garges, H., Gallant, J., Anne, A. V., Öllinger, A., Mozer-Lisewska, I., . . . Petoumenos, K. (2022). Incidence of hypertension in people with HIV who are treated with integrase inhibitors versus antiretroviral regimens the RESPOND cohort consortium. HIV Medicine, 895-910. 23(8), https://doi.org/10.1111/hiv.13273
- Dimala, C. A., Blencowe, H., & Choukem, S. P. (2018). The association between antiretroviral therapy and selected cardiovascular disease risk factors in sub-Saharan Africa: A systematic review and meta-analysis. PLOS e0201404. ONE. 13(7),https://doi.org/10.1371/journal.pone.0201404

- Eckard, A. R., & McComsey, G. A. (2019). Weight gain and integrase inhibitors. Current Opinion in Infectious Diseases, 33(1), 10–19. https://doi.org/10.1097/qco.000000000000001
- Liboro, G. O., & Raheem, T. Y. (2021). Risks of cardio-vascular diseases among highly antiretroviral therapy (HAART) treated HIV seropositive volunteers at a treatment centre in Lagos, Nigeria. Pan African Medical Journal, https://doi.org/10.11604/pamj.2021.38.206.267
- Fisher, S. A., Fearn, T., Thompson, M., & Ellison, S. L. R. (2002). A decision theory approach to fitness for purpose in analytical measurement. The Analyst, 127(6), 818-824. https://doi.org/10.1039/b111465d
- Skanderson, M., Lowy, E., Kraemer, K. L., Butt, A. A., Bidwell Goetz, M., Leaf, D., Oursler, K. A., Rimland, D., Rodriguez-Barradas, M. C., Brown, S. T., Gibert, C. L., McGinnis, K., Crothers, K., Sico, J., Crane, H., Warner, A., ... Justice, A. C. (2013). HIV infection and the risk of acute myocardial infarction. JAMA Internal Medicine, 173(8), 614–622.
 - https://doi.org/10.1001/jamainternmed.2013.3 728
- Grand, M., Bia, D., & Diaz, A. (2019b). Cardiovascular Risk Assessment in People Living with HIV: A Systematic Review and Meta-Analysis of Real-Life Data. Current HIV Research. 18(1),5-18.https://doi.org/10.2174/1570162x17666191212 091618
- Hedayatnia, M., Asadi, Z., Zare-Feyzabadi, R., Yaghooti-Khorasani, M., Ghazizadeh, H., Ghaffarian-Zirak, R., Nosrati-Tirkani, A., Mohammadi-Bajgiran, M., Rohban, M., Sadabadi, F., Rahimi, H., Ghalandari, M., Ghaffari, M., Yousefi, A., Pouresmaeili, E., Besharatlou, M., Moohebati, M., Ferns, G. A., Esmaily, H., & Ghayour-Mobarhan, M. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids in Health and Disease, 19(1). https://doi.org/10.1186/s12944-020-01204-y
- Juma, K., Nyabera, R., Mbugua, S., Odinya, G., Jowi, J., Ngunga, M., Zakus, D., & Yonga, G. (2019). Cardiovascular risk factors among people living with HIV in rural Kenya: a clinic-based study. Cardiovascular Journal of

- South Africa/Cardiovascular Journal Southern 52–56. Africa, 30(1), https://doi.org/10.5830/cvja-2018-064
- Kenya Ministry of Health. (2022). Kenya HIV estimates report 2022. Ministry of Health. https://nascop.or.ke
- Lindayani, L., Purnama, H., Nurhayati, N., Sudrajat, D. A., & Taryudi, T. (2021). A 10-Years risk of cardiovascular disease among Tremblay, A.J., Morrissette, H., Gagné, J.-M., HIV-Positive individuals using BMI-Based Framingham risk score in Indonesia. SAGE 7. Open Nursing, https://doi.org/10.1177/2377960821989135
- Muwonge, H., Zavuga, R., Kabenge, P. A., & Makubuya, T. (2017). Nutritional supplement practices of professional Ugandan athletes: a Journal cross-sectional study. of the International Society of Sports Nutrition, 14, Wardenaar, F. C., & Hoogervorst, D. (2022). 41. https://doi.org/10.1186/s12970-017-0198-3
- Masyuko, S. J., Page, S. T., Kinuthia, J., Osoti, A. O., Polyak, S. J., Otieno, F. C., Kibachio, J. M., Mogaka, J. N., Temu, T. M., Zifodya, J. S., Otedo, A., Nakanjako, D., Hughes, J. P., & Farquhar, C. (2020). Metabolic syndrome and 10-year cardiovascular risk among HIVpositive and HIV-negative adults. Medicine, 99(27), e20845. https://doi.org/10.1097/md.0000000000020845
- Messner, B., & Bernhard, D. (2014). Smoking and cardiovascular disease. Arteriosclerosis Thrombosis and Vascular Biology, 34(3), 509– 515.
 - https://doi.org/10.1161/atvbaha.113.300156
- National Cholesterol Education Program (NCEP). (2002). Third report of the National Cholesterol Education Program (NCEP) treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation, 106(25),3143-3421. https://doi.org/10.1161/circ.106.25.3143
- Nyiambam, W., Sylverken, A., Owusu, I., Buabeng, K., Boateng, F., & Owusu-Dabo, E. Wilson, P. W., D'Agostino, R. B., Levy, D., (2020). Cardiovascular disease risk assessment among patients attending two cardiac clinics in the Ashanti Region of Ghana. Ghana Medical 140–145. Journal, 54(3), https://doi.org/10.4314/gmj.v54i3.3
- Osoti, A., Temu, T. M., Kirui, N., Ngetich, E. K., Kamano, J. H., Page, S., Farquhar, C., & Bloomfield, G. S. (2018). Metabolic Syndrome among Antiretroviral Therapy-Naive versus experienced HIV-Infected patients without cardiometabolic preexisting disorders Western Kenya. AIDS Patient Care and STDs, 215-222. https://doi.org/10.1089/apc.2018.0052

- of Pambou, H. O. T., Gagneux-Brunon, A., Fossi, B. T., Roche, F., Guyot, J., Botelho-Nevers, E., Dupre, C., Bongue, B., & Nkenfou, C. N. (2022). Assessment of cardiovascular risk factors among HIV-infected patients aged 50 years and older in Cameroon. AIMS Public 490-505. Health. 9(3),https://doi.org/10.3934/publichealth.2022034
 - Bergeron, J., Gagné, C. and Couture, P. (2004) Validation of the Friedewald Formula for the Determination of Low-Density Lipoprotein Cholesterol Compared with β-Quantification in a Large Population. Clinical Biochemistry, 785-790. 37, https://doi.org/10.1016/j.clinbiochem.2004.03. 008
 - How Sports Health Professionals Perceive and Prescribe Nutritional Supplements to Olympic and Non-Olympic International Journal of Environmental Research and Public Health, 19(19), 12477. https://doi.org/10.3390/ijerph191912477
 - UNAIDS. (2023). Global HIV & AIDS statistics Fact sheet. https://www.unaids.org/en/resources/factsheet
 - Vigny, N. N., Assob, J. C. N., & Akum, A. E. (2020). Metabolic syndrome in HIV/AIDS patients at the Tiko Central Clinic and Cottage Hospital in Cameroon: influence on cardiovascular risk and predictors. Cardiology and Cardiovascular Research, https://doi.org/10.11648/j.ccr.20200403.15
- expert panel on detection, evaluation, and Vos, A. G., & Venter, W. (2021). Cardiovascular toxicity of contemporary antiretroviral therapy. Current Opinion in HIV and AIDS,
 - Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837-1847. https://doi.org/10.1161/01.CIR.97.18.1837
 - Woldeyes, E., Fisseha, H., Mulatu, H. A., Ephrem, A., Benti, H., Alem, M. W., & Ahmed, A. I. (2022). Prevalence of clinical cardiovascular disease risk factors among HIV infected patients on Anti-Retroviral treatment in a tertiary hospital in Ethiopia. HIV/AIDS - Research and Palliative Care, 297–309. Volume 14,

https://doi.org/10.2147/hiv.s362459

guidelines on HIV prevention, testing, treatment, service delivery and monitoring. WHO.

https://www.who.int/publications/i/item/97892 40031593

World Health Organization. (2022).

Cardiovascular diseases (CVDs) fact sheet. WHO. https://www.who.int/news-room/factsheets/detail/cardiovascular-diseases

World Health Organization. (2021). Consolidated Wu, P., Chen, M., Sheng, W., Hsieh, S., Chuang, Y., Cheng, A., Pan, S., Wu, U., Chang, H., Luo, Y., Yang, S., Zhang, J., Sun, H., & Hung, C. (2019). Estimated risk of cardiovascular disease among the HIVpositive patients aged 40 years or older in of Taiwan. Microbiology Journal Immunology and Infection, 52(4), 549-555. https://doi.org/10.1016/j.jmii.2019.03.006