AFRICAN JOURNAL OF PHARMACY AND ALTERNATIVE MEDICINE

don <u>https://doi.org/10.58460/ajpam.v4i2.157</u>

RESEARCH ARTICLE

INCITAL BIS LABS

Assessment of *In Vitro* Dissolution Profiles of Marketed Albendazole Tablets in Nakuru County, Kenya

Sarah VUGIGI^{1*} , Nathan KIPSANG¹, and Anderson CHEBON¹

Authors' Affiliation

¹Department of Pharmaceutical Chemistry & Pharmaceutics, School of Pharmacy, Kabarak University, Kenya

*Corresponding Authors: svugigi@kabarak.ac.ke

Article History

Submitted: 17th May 2025 Accepted: 22nd June 2025

Published Online: 7th September 2025

To read this paper online, please scan the QR code below:

ABSTRACT

Albendazole, a benzimidazole derivative, is widely used to treat helminth infections. The average prevalence of helminthiasis in Kenya is approximately 12.9%. Albendazole is classified as a BCS II class drug, exhibiting low solubility and high permeability, which can result in erratic bioavailability. In vitro dissolution testing provides valuable information for predicting the bioavailability of a drug, particularly in cases where absorption is limited by the dissolution rate. This study aimed to assess the in vitro dissolution profiles of seven brands of albendazole tablets sold in various pharmacy outlets in Nakuru County, Kenya. The tablets were randomly selected and subjected to standard quality control tests. Content of the drug substance in the tablets was determined by UV spectrophotometry. Disintegration and dissolution tests were performed as described in the USP monograph. All tested brands exhibited assay values within the acceptable range of 90% to 110%, ranging from 95.4% to 103.3%. Four brands complied with the specification for the disintegration test for immediate-release tablets which require disintegration within 15 minutes. One brand disintegrated in 33 minutes, whereas two did not disintegrate within 60 minutes. Four brands failed to meet the dissolution test specifications, releasing only 0.9%, 1.6%, 7.3%, and 20.8% of the labeled content, respectively, after 30 minutes. Their dissolution profiles were dissimilar to that of the reference brand. These findings indicate the presence of substandard albendazole tablets in the Kenyan market and underscore the need for regular postmarketing surveillance and quality assessments to ensure pharmaceutical equivalence among brands and safeguard patient safety.

Keywords: lbendazole, Bioavailability, Dissolution Test, In vitro Testing, Pharmaceutical equivalence.

How to Cite this paper: Vugigi, S., Kipsang, N., & Chebon, A. (2025). In-vitro Dissolution Assessment of Albendazole Tablets Marketed in Nakuru, Kenya. *African Journal of Pharmacy and Alternative Medicine*, 4(2). https://doi.org/10.58460/ajpam.v4i2.157

INTRODUCTION

Albendazole is a benzimidazole derivative that exhibits broad-spectrum anthelmintic activity against both intestinal and tissue parasites. Helminth infections affect over 1.5 billion people across more than 166 countries (Pullan et al., 2014), with significant endemicity in sub-Saharan Africa, Asia, China and south America (World Health Organization, 2023). In Kenya, over five million individuals, particularly school-aged children are at risk of infection (Okoyo et al., 2020), with an estimated national prevalence of 12.9% (Galia et al., 1999; Okoyo et al., 2020). Helminths such as Trichuris trichiura, Ascaris lumbricoides, and hookworms (Necator americanus, Ancylostoma duodenale) commonly reside in the intestinal lumen but may also affect internal organs such as the liver, lungs, muscles, and blood vessels (Mulcahy et al., 2005). Therefore, the absorption of albendazole (ABZ) from the gastrointestinal tract to the site of action is essential.

Albendazole is categorized as a Class II compound in the Biopharmaceutical Classification System (BCS), characterized by high permeability and low solubility (Dayan, 2003). Additionally, ABZ powder exhibits poor flow properties, which negatively affect both weight and content uniformity during the manufacturing process. The solubility and flowability of a drug are critical parameters in dosage formulation and should be carefully considered during product development to ensure consistent product quality and efficient production. Albendazole tablets were originally developed and introduced to the market in 1996 by GlaxoSmithKline (GSK).

Albendazole is primarily formulated as chewable tablets to facilitate disintegration and enhance release. Disintegration precedes dissolution of the drug substance, which is essential for its systemic absorption (Markl & Zeitler, 2017). Dissolution measures the extent and rate at which a drug dissolves at a specific time, impacts bioavailability, and consequently influences its pharmacological action. Appropriate acceptance criteria for these quality attributes should be established during product development, outlined in the Quality Target Product Profile (QTPP), which defines the desired quality characteristics of a drug product. The United States Pharmacopeia (USP) states that at least 80% (Q) of the labeled drug amount of ABZ must dissolve within 30 minutes (USP, 2020). Dissolution testing is a key tool for assessing pharmaceutical equivalence by comparing drug release profiles to a reference product, which provides better characterization than single-point tests (Muselik et al., 2021). The pharmaceutical equivalence of various commercial brands of a

product serves as a marker of their therapeutic equivalence. Therefore, generic ABZ tablets should be formulated to ensure interchangeability with the innovator's product.

Albendazole presents formulation difficulties primarily due to its poor aqueous solubility, which may contribute to variability in the dissolution behavior of generic products (Galia et al., 1999; Amidon et al., 1995). Drug dissolution is influenced by critical parameters of both the drug substance and manufacturing process (Bojnanska et al., 2014). These factors should be thoroughly evaluated and validated during development to ensure consistent product quality. The dissolution of the ABZ tablets can be improved by using micronized drug particles or nano particles in the formulation (Koradia & Parikh, 2012). Also, excipients such as diluents, disintegrants, and surfactants are intentionally incorporated to enhance the solubility of the drug substance. For instance, Kimaro et al. (2019) identified an optimal ABZ formulation containing sodium lauryl sulfate, polyvinylpyrrolidone, and sodium croscarmellose, which achieved rapid disintegration of 2 to 5 minutes and a dissolution rate of 91.5%. Notably, these factors can be identified during product development using Quality by Design (QbD) principles. Quality by Design approach enables systematic identification of formulation and process variables that impact critical quality attributes (CQAs), such as disintegration and dissolution, to meet a predefined QTPP (Sitre & Kamble, 2021; Aru et al., 2024)

The complexity of albendazole tablet formulation development, combined with limited research and development (R&D) capacity manufacturing facilities, presents a potential risk of dissolution test failures and the presence of substandard products on the market. The assurance of pharmaceutical equivalence and interchangeability of different drug product brands is a global challenge (Jouni et al., 2023; Yu & Maliepaard, 2018; Al-Jazairi et al., 2008). Market surveillance reports by the Kenya Pharmacy and Poisons Board (PPB) have shown that between 2018 and 2022, ten batches of ABZ 400 mg were recalled due to non-compliance with the dissolution test (Pharmacy and Poisons Board, of 2022). The absence assurance pharmaceutical combined equivalence, with limited R&D capacity and the presence of noncompliant products, represents a significant gap in ensuring the quality and effectiveness of albendazole tablets in Kenya. Comparing the dissolution profiles of the albendazole innovator product and marketed tablet brands is important for assessing formulation similarity. Nakuru, one of the four cities in Kenya, with population of

approximately 2.1 million people (Abiri Kenya, All 2025), was selected due to its proximity to the study authorization from the Pharmacy and Poisons site. Additionally, it has a young demographic Board of Kenya. The brands were coded C001 to profile that is more likely to be impacted by C007 based on the order of recording, to preserve substandard anthelmintics (Covenant of Mayors, blinding during analysis. 2021, Masaku et al., 2017). This study evaluated the in - vitro dissolution profiles of seven Sample Collection albendazole chewable tablet formulations available All and sold among pharmacy outlets in Nakuru authorization from the Pharmacy and Poisons County, Kenya. The innovator brand (Zentel Board of Kenya. The brands were coded C001 to tablets) was used as the reference. Disintegration C007 based on the order of recording, to preserve and assay tests were also performed on the tablets, blinding during analysis. as both parameters impact dissolution. Testing adhered to the International Pharmacopoeia Equipment and Materials (Twelfth Edition, 2025), which specifies that All weight measurements were taken using the chewable tablets must contain 90.0% to 110.0% of FA22105SEM the labeled drug content, disintegrate within 15 Electronic Semi-micro-Analytical Balance. Assay minutes, and release not less than 80% (Q) of the of the ABZ tablets for each brand was done using labeled drug in 30 minutes. By comparing the Double Beam UV-VIS dissolution profiles and assessing pharmaceutical Spectrophotometer equivalence, this study provides evidence to Dissolution test was carried out using the RC-8 support regulatory post-marketing surveillance and Dissolution guides formulators in the development of high- Disintegration of the tablets was conducted using quality ABZ generics.

METHODOLOGY

Study Design

analysis design. Seven brands of albendazole innovator product, with market authorization for chewable tablets marketed in Nakuru, Kenya, were sale in Kenya were used in this study. Of the six evaluated for three key quality attributes: assay, generic disintegration, and dissolution. The analysis was manufactured in Kenya, two in India, and one in designed and conducted in accordance with Bangladesh. All products were purchased in their protocols outlined in the United Pharmacopeia (USP) and the International used within their shelf life. Albendazole working Pharmacopoeia (Ph. Int).

Study Location

Sample collection was carried out in Nakuru County, located in the Rift Valley region of Kenya All laboratory analyses, including drug assay, disintegration, and dissolution tests, conducted at the pharmaceutical chemistry and pharmaceutics laboratories of Kabarak University.

Sample Size Calculation

The study evaluated ABZ brands commonly available from wholesale distributors with current marketing authorization in Nakuru County, Kenya. Seven ABZ tablet brands were included in the study.

Sampling Technique

Convenience sampling was employed to select brands available within wholesale pharmacies in Nakuru County, Kenya, at the time of the study. This method was chosen as it reflects the actual market accessibility faced by consumers.

selected brands had valid

selected brands had valid market

Laboratory 0.01 mg / 0.1 mgTouch Screen (Model No-LI-2904). Tester (Model No-UMS-RC8). Labtech disintegration test apparatus. Analytical grade 0.1N HCl, 0.1N NaOH, and methanol were used as solvents. Solutions were filtered through the Whatman membrane filter No. 1 with a pore size filter of 0.45-um. Seven The study employed an in vitro quantitative brands of albendazole tablets, including the brands evaluated, three States original packaging, coded for identification, and standard with a potency of 99.9 % was used for all tests, as required.

Assay of Drug Content

Drug content in each of the test albendazole tablets brands was determined by UV method. were Maximum absorbance at about 308 nm and minimum absorbance at about 350 nm of the final solution was measured and recorded. The assay was carried out in duplicate. The content of ABZ was determined by comparing the absorbance of the sample with that of a working standard (WS) of known concentration.

Standard solution

A solution containing 0.009 mg/mL of ABZ was prepared by accurately weighing approximately 90 mg of albendazole WS and transferring it to a 250 mL volumetric flask.10 mL of acidified methanol was added and shaken to dissolve. The resulting solution was diluted with 0.1N HCl to volume and mixed. 5.0 mL of this solution was transferred to a 200-mL volumetric flask and diluted with 0.1N NaOH to volume and mixed.

Maximum absorbance at about 308 nm and 37±0.5°C. From each vessel, 10.0 mL aliquots minimum absorbance at about 350 nm of the final were withdrawn at 5, 10, 15, 25, and 30 minutes, solution was measured and recorded.

Sample preparation

albendazole was placed in a 50 mL volumetric compared with those of the ABZ reference flask and 30 mL of acidified methanol was added. standard. The USP dissolution specification for The mixture was shaken using a mechanical shaker albendazole tablets (not less than 80% (Q) of the for 30 minutes and diluted with acidified methanol labeled drug amount should dissolve within 30 to volume. The solution was filtered and 4 mL minutes) was used as the evaluation threshold. transferred to a 200 mL volumetric flask and diluted with 0.1N NaOH to volume and mixed. Data Analysis Maximum absorbance at about 308 nm and Collected data was analyzed using descriptive minimum absorbance at about 350 nm of the final statistics. Absorbance data were converted to solution was measured and recorded. Sample percentage drug content and plotted over time to concentrations were calculated by comparing generate dissolution profiles for each brand. Data absorbance values to those of the working on disintegration time for each brand sampled is standard.

Disintegration test

compliance with USP guidelines. To summarize, subjects. All procedures were conducted on six tablets from each brand were placed in separate commercial pharmaceutical products using in six tubes of the disintegration basket rack, then vitro methodologies, and no ethical approval was immersed in 1L of distilled water maintained at required. However, ethical standards of data 37±0.5°C. Disintegration time was recorded as the handling, product anonymization, and academic time taken for complete dispersion of the tablet, integrity were strictly observed. with no visible residue on the mesh screen.

Dissolution test

In this study, dissolution testing of ABZ brands Assay of Drug Content was performed at multiple time points to develop The seven brands met the pharmacopeial drug release profiles. The dissolution profiles were specification for drug content per tablet, which determined using the paddle method (USP was required to be between 90% and 110% of the Apparatus II) at 50 rpm with 900 mL of 0.1N HCl labeled claim. Drug content assay results ranged as the dissolution medium, maintained at

filtered, and diluted to 250 mL with 0.1N NaOH. Absorbance was measured using UV-Vis spectrophotometric method at 308 nm and 350 A portion of powder containing about 20 mg of nm using 0.1N NaOH as the blank. Results were

presented in form of tables.

Ethical Consideration(s)

Disintegration testing was carried out in This study did not involve human or animal

RESULTS

between 96% to 103.32% as shown in Table 1 below.

Table 1: Concentration of ABZ Drug Content Among the Seven Sampled Brands

ABZ Brand Code	Assay (%)
Innovate brand (reference)	101.3
C002	101.3
C003	95.4
C004	102.3
C005	96.0
C006	103.3
C007	101.2

Disintegration Test

Table 2 presents the results of the disintegration test. Four brands complied with the requirement for the disintegration test for immediate-release tablets (less than 15 minutes). One brand disintegrated after 33 minutes, and two showed no observable disintegration after 60 minutes. Brand C005 showed no significant observable disintegration even up to 90 minutes.

Table 2:Disintegration Time in Minutes of the Seven Sampled ABZ Brands

ABZ Brand Code	Disintegration time (Minutes)
Innovate brand (reference)	3
C002	2
C003	6
C004	33
C005	>90
C006	62
C007	5

Dissolution test

As shown in Table 3, the dissolution test results after 30 minutes indicate variability in the extent of drug substance dissolution among the seven brands. Brands C001, C002 and C007 complied with the pharmacopeial requirement for the dissolution of ABZ tablets, which is 80% (Q), showing dissolution values of 83.5 %, 85.9%, and 81.7% respectively. Four brands (C003, C004, C005, C006) did not meet the requirement for the dissolution test, releasing 20.8%, 7.3%, 0.9%, and 1.6% of the labelled content respectively, after 30 minutes.

Table 3:Dissolution Profiles of the Sampled ABZ Brands After 30 Minutes

Brand Code	Dissolution at 30 min (%)
C001	83.5
C002	85.9
C003	20.8
C004	7.3
C005	0.9
C006	1.6
C007	81.7

The dissolution profiles of the seven tablet brands during the 30-minute test are presented in Figure 1. These profiles reveal marked differences in drug release rates over time. Brands C001, C002, and C007 exhibit rapid and efficient dissolution, reaching over 70% within the first 15 minutes and showing slight increases thereafter. In contrast, Brand C003 displays a significantly lower dissolution profile than the stipulated amount. Similarly, Brands C004, C005, and C006 demonstrated negligible dissolution, with minimal increases over time, suggesting poor drug release.

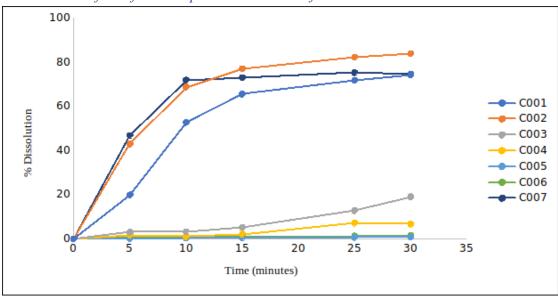


Table 3: Dissolution Profiles of the Sampled ABZ Brands After 30 Minutes

DISCUSSION

This study evaluated the in vitro dissolution ABZcharacteristics of chewable tablet formulations available in Nakuru, Kenya, using the innovator product, Zentel, as a reference. All sampled brands were assayed for drug content concentration and complied with pharmacopeial specifications, indicating satisfactory assay results for the active pharmaceutical ingredient (API).

Disintegration Profile

Disintegration testing was used to assess how rapidly ABZ tablet breaks into smaller fragments in a liquid medium. According to USP, complete disintegration occurs when only a soft mass or residue of insoluble coating remains. In this study, significant variation in disintegration times was It is noteworthy that all brands that failed observed among the tested brands. Four brands complied with the USP requirement for immediaterelease tablets (≤15 minutes), while one brand disintegrated in 33 minutes, and two failed to disintegrate within 60 minutes. These discrepancies may largely be attributable to formulation likely be due to the use of non-micronized API, choice, variables, including excipient manufacturing processes, and the presence or of disintegrants. Notably, pharmacopoeias do not mandate disintegration testing for chewable tablets, which can contribute to these inconsistencies. This study parallels findings from study done by Nyamweya et al. (2020), where disintegration times for antacid chewable tablets ranged from 6 to over 60 minutes.

Dissolution Profile

Dissolution testing was used to measure the extent

and rate at which ABZ-tablet API is released from a dosage form under standardized conditions. This is a crucial test for drugs in BCS Class II and IV, such as ABZ, which are poorly soluble. Findings from the current study showed that only three brands met the criterion of $\geq 80\%$ drug release within the specified time frame (International Pharmaceutical Federation, 2018), indicating potential bioavailability concerns with the remaining four. The probable cause of this failure is variation in the physicochemical properties of the drug substance used in the various brands, as well as differences in the types of excipients used, tablet formulation, and the manufacturing process, all of which significantly influence the performance attributes of the final product (Hamishehkar et al., 2016).

disintegration testing also failed the dissolution test, reinforcing the relationship between the two performance attributes. However, one exception was observed: brand C003 passed disintegration (6 minutes) but failed dissolution. This might which slows drug release despite adequate disintegration. Evidently, the dissolution of the ABZ tablets can be improved by using micronized drug particles or nano particles in the formulation (Koradia & Parikh, 2012).

Pharmacopeial Inconsistencies

One of the contributing factors to the variability in disintegration time could be the different requirements for disintegration across different pharmacopeias. The USP (2018)and International Pharmacopoeia require chewable

The European Pharmacopoeia similarly mandates disintegration for chewable formulations. contrast, the Indian Pharmacopoeia exempts chewable tablets from disintegration requirements. These inconsistencies can lead to divergent manufacturing standards and affect product quality across markets.

Impact of Formulation on Disintegration and Dissolution

disintegrants and varying manufacturing methods exhibit inconsistent drug release can significantly influence tablet disintegration and potentially dissolution behavior (Markl & Zeitler, 2017). Moreover, the variation in the in vitro Disintegration is a critical quality test that performance of ABZ brands, with four brands facilitates drug release by increasing the surface failing to pass dissolution test, suggests a lack of area exposed to the dissolution medium. Many pharmaceutical equivalence among some brands manufacturers, particularly those outdated pharmacopeial standards, may not County. This underscores the need for regular include disintegrants in chewable formulations market surveillance and quality assessments of (Nyamweya et al., 2020), potentially compromising marketed pharmaceutical products by the drug drug release and therapeutic effectiveness. It is regulatory authority to ensure pharmaceutical important to note, although a failed disintegration equivalence, product interchangeability, and test often leads to poor dissolution, the converse is patient safety. not necessarily true, as other formulation attributes, such as particle size and solubility may CONFLICT OF INTEREST also influence dissolution performance.

Market Implications

Only three of the seven albendazole brands tested **REFERENCES** demonstrated acceptable performance in all quality Abiri Kenya. (2025, January 27). *Nakuru county*. tests (assay, disintegration, and dissolution). This raises concerns about the therapeutic equivalence of the remaining products. Poor in vitro performance may translate to suboptimal clinical efficacy, particularly in populations relying on generics for mass drug administration or routine deworming. Global studies have highlighted similar Al-Jazairi, A. S., Blhareth, S., Eqtefan, I. S., & concerns. A 2017 study in Yemen found that only two out of seven albendazole tablet brands met British Pharmacopoeia (BP) quality standards (Othman, 2017). Similarly, research by Kimaro et al. (2019) reported that generics in developing Amidon, G. L., Lennernäs, H., Shah, V. P., & countries often show inferior dissolution profiles compared to the innovator brand. An Ethiopian study of two albendazole products concluded that pharmaceutical products may vary significantly in quality attributes and recommended regular quality assessments to ensure therapeutic efficacy (Belew et al., 2015). Thus, there is a clear need for regulatory alignment and enforcement of stringent quality Aru, P. B., Gulhane, M. S., Katekar, V. A., & standards to ensure consistency in quality across products. Harmonizing pharmaceutical disintegration and dissolution requirements for chewable tablets is one vital step to protect public health and ensure patient outcomes.

Market Implications

This study was limited by its geographical scope, as Belew, S., Getachew, M., Suleman, S., all samples were sourced from Nakuru, Kenya.

Additionally, only seven brands were evaluated, and no in vivo bioequivalence data were collected. Future research should consider including pharmacokinetic studies to comprehensively assess therapeutic interchangeability.

CONCLUSION

This study demonstrates that albendazole tablet Further, formulation factors such as the absence of brands containing the same drug content may profiles, affecting therapeutic efficacy. following available in pharmacy outlets across Nakuru

Authors declare no conflict of interest.

https://abiri.home.blog/counties/nakurucounty/13/#:~:text=Population%20of%20Na kuru%20County.of%20unemployment%20is %20about%2024.52%25

Al-Suwayeh, S. A. (2008). Brand and generic medications: Are they interchangeable? Annals of Saudi Medicine, 28(1), 33-41. https://doi.org/10.5144/0256-4947.2008.33

Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in-vivo bioavailability. Pharmaceutical research, 12(3), 413–420. https://doi.org/10.1023/a:1016212804288

Deshmukh, S. P. (2024). Quality by design (QbD) in pharmaceutical development: A comprehensive review. GSC Biological and Pharmaceutical Sciences, 26(1), 328-340. https://doi.org/10.30574/gscbps.2024.26.1.001

Mohammed, T., Deti, H., D'Hondt, M., Wynendaele, E., Mekonnen, Z., Vercruysse,

Levecke, B. (2015). Assessment of efficacy and quality of two albendazole brands commonly against soil-transmitted infections in school children in Jimma town, Ethiopia. PLOS Neglected Tropical Diseases, Markl, D., & Zeitler, J. A. (2017). A review of 9(9),e0004057.

https://doi.org/10.1371/journal.pntd.0004057

Bojnanska, E., Kalina, M., Parizek, L., Bartonickova, E., Opravil, T., Vesely, M., M., & Jampilek, J. Determination of critical parameters of drug substance influencing dissolution: A case study. BioMedResearch International, 2014(929248),1-9.

https://doi.org/10.1155/2014/929248

Dayan, A. (2003). Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Tropica, 86(2-3), Mulcahy, G., O'Neill, S., Fanning, J., McCarthy, 141-159.

https://doi.org/10.1016/s0001-706x(03)00031-7

- Galia, E., Horton, J., & Dressman, J. B. (1999). Albendazole Generics A Comparative In vitro Study. Pharmaceutical Research, 16(12), 1871-1875. https://doi.org/10.1023/a:1018907527253
- Hamishehkar, H., Ghanbarzadeh, S., Khalili, A., Jouyban, A., Emami, S., Javadzadeh, Y., & Solhi, M. (2016). Dramatic improvement in dissolution rate of albendazole by a simple, one-step, industrially scalable technique. Research in Pharmaceutical Sciences, 11(6), Nyamweya, N. N., Kimani, S. N., & Abuga, K.

https://doi.org/10.4103/1735-5362.194868

- International Pharmaceutical Federation. (2018). FIP guidelines for dissolution testing of solid oral products. FIP - International Pharmaceutical Federation Home. https:// www.fip.org/ file/1557#:~:text=The%20dissolution%20run% 20in%20quality,at%20least%20cover%2024%20
- Jouni, F., Mansour, M., Hatem, G., & Awada, S. (2023). A comprehensive review addressing the factors influencing generic drug substitution. Journal of Generic Medicines: The Business *Journal for the Generic Medicines Sector*, 20(1), 5-9. https:// doi.org/10.1177/17411343231206468
- Kimaro, E., Tibalinda, P., Shedafa, R., Temu, M., & Kaale, E. (2019). Formulation development of chewable albendazole tablets with improved dissolution rate. *Heliyon*, 5(12), e02911. https://doi.org/10.1016/j.heliyon.2019.e02911

- J., Duchateau, L., De Spiegeleer, B., & Koradia, D., & Parikh, H. (2012). Dissolution enhancement of albendazole nanocrystal formulation. Journal Pharmacy And Bioallied Sciences, 4(5), 62. https://doi.org/10.4103/0975-7406.94141
 - disintegration mechanisms and measurement techniques. Pharmaceutical Research, 34(5), 890-917.

https://doi.org/10.1007/s11095-017-2129-z

(2014). Masaku, J., Mutungi, F., Gichuki, P. M., Okoyo, C., Njomo, D. W., & Njenga, S. M. (2017). High prevalence of helminths infection and associated risk factors among adults living in a rural setting, central Kenya: A crosssectional study. Tropical Medicine and Health, *45*(15),1-9.

https://doi.org/10.1186/s41182-017-0055-8

E., & Sekiya, M. (2005). Tissue migration by parasitic helminths - an immunoevasive strategy? Trends in Parasitology, 21(6), 273-

https://doi.org/10.1016/j.pt.2005.04.003

Muselík, J., Komersová, A., Kubová, K., Matzick, K., & Skalická, B. (2021). A critical overview of FDA and EMA statistical methods to compare in vitro drug dissolution profiles of pharmaceutical products. Pharmaceutics, *13*(10), https://doi.org/10.3390/pharmaceutics1310170

O. (2020). Chewable antacid tablets: Are relevant? AAPSdisintegration tests PharmSciTech,21(5).

https://doi.org/10.1208/s12249-020-01696-y

- Okoyo, C., Campbell, S. J., Williams, K., Simiyu, E., Owaga, C., & Mwandawiro, C. (2020). Prevalence, intensity and associated risk factors of soil-transmitted helminth and schistosome infections in Kenya: Impact assessment after five rounds of mass drug administration in Kenya. PLOS Neglected **Tropical** Diseases, *14*(10), e0008604. https://doi.org/10.1371/journal.pntd.0008604
- Othman, G. Q. (2017). Quality assessment of seven brands of Albendazole tablets marketed in Yemen. Yemeni Journal for Medical *Sciences*, 11(1), 46-52.

https://doi.org/10.20428/yjms.v11i1.1223

Pharmacy and Poisons Board. (2022, March 19). Products recalled in 2021. https://web.pharmacyboardkenya.org/product s-recalled-in-2021/

Pullan, R. L., Smith, J. L., Jasrasaria, R., & Brooker, S. J. (2014). Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & Vectors, 7(1), 37.

https://doi.org/10.1186/1756-3305-7-37

Sitre, D. G., & Kamble, R. K. (2021).

Formulation development and evaluation of new Albendazole tablets with integrated quality by design (QbD) approach. *Journal of Drug Delivery and Therapeutics*, 11(2), 123-134.

https://doi.org/10.22270/jddt.v11i2.4782

USP. (2020). *Albendazole Monograph* (00, 20200228). United States Pharmacopeia. https://www.uspnf.com/sites/default/files/usp_p df/EN/USPNF/revisions/albendazole-tabspending-nitr-20200228.pdf

World Health Organization. (2012). Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases: A Roadmap for Implementation. World Health Organization. https://iris.who.int/bitstream/handle/10665/70 809/WHO_HTM_NTD_2012.1_eng.pdf? sequence=1

World Health Organization. (2023, January 18). Soil-transmitted helminth infections. World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections

Yu, Y., & Maliepaard, M. (2018).

Interchangeability of generics—Experiences and outlook toward pharmacokinetics variability and generic-generic substitution. *Clinical Pharmacology & Therapeutics*, 105(2), 292-294.

https://doi.org/10.1002/cpt.1250